Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Magnesium oxide (MgO) is a major component of the Earth’s mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaClB1 crystal structure to a CsClB2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature. We identify theB1 toB2 phase transition between 397 and 425 gigapascal (around 9700 kelvin), in agreement with recent theory that accounts for phonon anharmonicity. From 425 to 493 gigapascal, we observe a mixed-phase region of B1 and B2 coexistence. The transformation follows the Watanabe-Tokonami-Morimoto mechanism. Our data are consistent withB2-liquid coexistence above 500 gigapascal and complete melting at 634 gigapascal. This study bridges the gap between previous theoretical and experimental studies, providing insights into the timescale of this phase transition.more » « less
-
Abstract The properties of all materials at one atmosphere of pressure are controlled by the configurations of their valence electrons. At extreme pressures, neighboring atoms approach so close that core-electron orbitals overlap, and theory predicts the emergence of unusual quantum behavior. We ramp-compress monovalent elemental sodium, a prototypical metal at ambient conditions, to nearly 500 GPa (5 million atmospheres). The 7-fold increase of density brings the interatomic distance to 1.74 Å well within the initial 2.03 Å of the Na + ionic diameter, and squeezes the valence electrons into the interstitial voids suggesting the formation of an electride phase. The laser-driven compression results in pressure-driven melting and recrystallization in a billionth of a second. In situ x-ray diffraction reveals a series of unexpected phase transitions upon recrystallization, and optical reflectivity measurements show a precipitous decrease throughout the liquid and solid phases, where the liquid is predicted to have electronic localization. These data reveal the presence of a rich, temperature-driven polymorphism where core electron overlap is thought to stabilize the formation of peculiar electride states.more » « less
-
The discovery of more than 4500 extrasolar planets has created a need for modeling their interior structure and dynamics. Given the prominence of iron in planetary interiors, we require accurate and precise physical properties at extreme pressure and temperature. A first-order property of iron is its melting point, which is still debated for the conditions of Earth’s interior. We used high-energy lasers at the National Ignition Facility and in situ x-ray diffraction to determine the melting point of iron up to 1000 gigapascals, three times the pressure of Earth’s inner core. We used this melting curve to determine the length of dynamo action during core solidification to the hexagonal close-packed (hcp) structure. We find that terrestrial exoplanets with four to six times Earth’s mass have the longest dynamos, which provide important shielding against cosmic radiation.more » « less
An official website of the United States government
